215 research outputs found

    Trunk posture adaptations during sitting on dynamic stool: a validation study

    Get PDF
    Back pain is a complex condition that results from multiple factors including sitting issues such as the chair type and spinal sitting posture. The physiological spinal curvature on the sagittal plane represents a typical feature of good body posture. Sitting postures matching the physiological shape of the spine on the sagittal plane during standing are deemed advantageous from a postural point of view. The aim of this study was to validate a novel dynamic stool by comparing trunk posture adaptations on the sagittal plane during dynamic sitting vs. conventional sitting (standard stool) in healthy people. In total, 100 healthy adults were included. Age, sex and body mass index were recorded. Thoracic kyphosis and lumbar lordosis were measured with the IncliMed(R) goniometer during standing posture, conventional sitting posture (standard stool) and dynamic sitting posture (novel dynamic stool). Sitting posture was maintained for 2 min before evaluation. Thoracic kyphosis and lumbar lordosis were significantly different between standing vs. sitting (dynamic and conventional) posture (p < 0.001) and between dynamic vs. conventional sitting posture (p < 0.001). Sitting on the novel dynamic stool tested in this study was shown to provide a greater match of thoracic kyphosis and lumbar lordosis with the physiological spinal curvature on the sagittal plane during standing than conventional sitting

    A novel approach to new-onset hemiplegic shoulder pain with decreased range of motion using targeted diagnostic nerve blocks: the ViVe algorithm

    Get PDF
    Introduction: Hemiplegic shoulder pain (HSP) is the most common pain disorder after stroke with incidence estimates of 30-70% and associated with reductions in function, interference with rehabilitation, and a reduced quality of life. Onset may occur as soon as a week after stroke in 17% of patients. Management of HSP represents a complex treatment pathway with a lack of evidence to support one treatment. The pain has heterogeneous causes. In the acute setting, decreased range of motion in the shoulder can be due to early-onset spasticity, capsular pattern stiffness, glenohumeral pathology, or complex regional pain syndrome (CRPS). As contracture can form in up to 50% of patients after stroke, effective management of the painful shoulder and upper limb with decreased range of motion requires assessment of each possible contributor for effective treatment. The anesthetic diagnostic nerve block (DNB) is known to differentiate spasticity from contracture and other disorders of immobility and can be useful in determining an appropriate treatment pathway. Objective: To create a diagnostic algorithm to differentiate between the causes of HSP in the stiff, painful shoulder in the subacute setting using diagnostic techniques including the Budapest Criteria for CRPS and DNB for spasticity and pain generators. Results: Examination of each joint in the upper extremity with HSP may differentiate each diagnosis with the use of an algorithm. Pain and stiffness isolated to the shoulder may be differentiated as primary shoulder pathology; sensory suprascapular DNB or intra-articular/subacromial injection can assist in differentiating adhesive capsulitis, arthritis, or rotator cuff injury. CRPS may affect the shoulder, elbow, wrist, and hand and can be evaluated with the Budapest Criteria. Spasticity can be differentiated with the use of motor DNB. A combination of these disorders may cause HSP, and the proposed treatment algorithm may offer assistance in selecting a systematic treatment pathway

    Management of spastic equinovarus foot in children with cerebral palsy: an evaluation of anatomical landmarks for selective nerve blocks of the tibial nerve motor branches

    Get PDF
    Objective: To define the anatomical landmarks of tibial motor nerve branches for selective motor nerve blocks of the gastrocnemii,  soleus and tibialis posterior muscles in the management of spastic equinovarus foot. Design: Observational study. Patients: Twenty-four children with cerebral palsy with spastic equinovarus foot. Methods: Considering the affected leg length, motor nerve branches to the gastrocnemii, soleus and tibialis posterior muscles were tracked using ultrasonography, and located in the space (vertical, horizontal, deep) according to the position of fibular head (proximal/distal) and a virtual line from the middle of popliteal fossa to the Achilles tendon insertion (medial/lateral). Results: Location of motor branches was defined as percentage of the affected leg length. Mean coordinates were: for the gastrocnemius medialis 2.5 ± 1.2% vertical (proximal), 1.0 ± 0.7% horizontal (medial), 1.5 ± 0.4% deep; for the gastrocnemius lateralis 2.3 ± 1.4% vertical (proximal), 1.1 ± 0.9% horizontal (lateral), 1.6 ± 0.4% deep; for the soleus 2.1 ± 0.9% vertical (distal), 0.9 ± 0.7% horizontal (lateral), 2.2 ± 0.6% deep; for the tibialis posterior 2.6 ± 1.2% vertical (distal), 1.3 ± 1.1% horizontal (lateral), 3.0 ± 0.7% deep. Conclusion: These findings may help the identification of tibial motor nerve branches to perform selective nerve blocks in patients with cerebral palsy with spastic equinovarus foot

    Rectus Femoris Characteristics in Post Stroke Spasticity: Clinical Implications from Ultrasonographic Evaluation

    Get PDF
    In stroke survivors, rectus femoris (RF) spasticity is often implicated in gait pattern alterations such as stiff knee gait (SKG). Botulinum toxin type A (BoNT-A) is considered the gold standard for focal spasticity treatment. However—even if the accuracy of injection is crucial for BoNT-A efficacy—instrumented guidance for BoNT-A injection is not routinely applied in clinical settings. In order to investigate the possible implications of an inadequate BoNT-A injection on patients' clinical outcome, we evaluated the ultrasound-derived RF characteristics (muscle depth, muscle thickness, cross-sectional area and mean echo intensity) in 47 stroke survivors. In our sample, we observed wide variability of RF depth in both hemiparetic and unaffected side of included patients (0.44 and 3.54 cm and between 0.25 and 3.16 cm, respectively). Moreover, our analysis did not show significant differences between treated and non-treated RF in stroke survivors. These results suggest that considering the inter-individual variability in RF muscle depth and thickness, injection guidance should be considered for BoNT-A treatment in order to optimize the clinical outcome of treated patients. In particular, ultrasound guidance may help the clinicians in the long-term follow-up of muscle quality

    Does botulinum toxin treatment affect the ultrasonographic characteristics of post-stroke spastic equinus? A retrospective pilot study

    Get PDF
    Equinovarus/equinus foot is a pattern most commonly treated with botulinum toxin type A in patients with post-stroke spasticity involving the lower limbs; the gastrocnemius is the muscle most frequently injected. Spastic equinovarus/equinus can present a mixture of conditions, including spasticity, muscle/tendon shortening, muscle weakness and imbalance. In this study, we wanted to determine whether botulinum toxin treatment affects the ultrasonographic characteristics of post-stroke spastic equinus. The same dose of AbobotulinumtoxinA was injected into the gastrocnemius medialis and lateralis of 21 chronic stroke patients with spastic equinus. Clinical (Ashworth scale and ankle range of motion) and ultrasound (conventional and sonoelastography) evaluation of the treated leg was carried out before and 4 weeks after injection. No significant effects of botulinum toxin treatment on the ultrasonographic characteristics of spastic equinus were observed. As expected, there were significant improvements in ankle passive dorsiflexion range of motion and calf muscle spasticity at 1 month after treatment. There was a direct association between Achilles tendon elasticity and calf muscle spasticity at baseline evaluation. Larger studies with a long-term timeline of serial evaluations are needed to further investigate the possible effects of botulinum toxin injection on spastic muscle characteristics in patients with post-stroke spasticity

    Anatomical landmarks for ultrasound‐guided rectus femoris diagnostic nerve block in post‐stroke spasticity

    Get PDF
    Introduction/Purpose To determine the location of the rectus femoris (RF) motor branch nerve, as well as its coordinates with reference to anatomical and ultrasound landmarks. Methods Thirty chronic stroke patients with stiff knee gait (SKG) and RF hyperactivity were included. The motor nerve branch to the RF muscle was identified medially to the vertical line from anterior superior iliac spine and the midpoint of the superior margin of the patella (line AP) and vertically to the horizontal line from the femoral pulse and its intersection point with the line AP (line F). The point of the motor branch (M) was located with ultrasound, and nerve depth and subcutaneous tissue thickness (ST) were calculated. Results The coordinates of the motor branch to the RF were 2.82 (0.47) cm medially to the line AP and 4.61 (0.83) cm vertically to the line F. Nerve depth and subcutaneous tissue thickness were 2.71 (0.62) cm and 1.12 (0.75) cm, respectively. Conclusion The use of specific coordinates may increase clinicians' confidence when performing RF motor nerve block. This could lead to better decision-making when assessing SKG in chronic stroke patients

    Telerehabilitation for neurological motor impairment: a systematic review and meta-analysis on quality of life, satisfaction, and acceptance in stroke, multiple sclerosis, and Parkinson’s disease

    Get PDF
    Telerehabilitation (TR) seems to be a viable and feasible solution to face the rehabilitative challenges posed by neurological impairments and to improve patients’ quality of life (QoL). This review aims to synthesize and analyze the evidence on the impact of physiotherapy intervention through TR on QoL in patients with stroke, Parkinson’s disease (PD), and multiple sclerosis (MS), together with an evaluation of their satisfaction and technology acceptance levels. Through a systematic search of the literature and a screening process, treatment effects were assessed with meta-analyses using the standardized mean difference, setting the confidence interval at 95%. We included 28 studies in the review, which were analyzed for methodological quality, whereas 16 studies were included in the meta-analyses. The results suggest a significant improvement in QoL in patients who underwent TR. We were unable to perform analyses for satisfaction and technology acceptance outcomes due to insufficient data. Overall, motor TR has a positive impact on the QoL of patients with neurological diseases, especially in stroke patients; although caution is needed in the interpretation of the results due to the high heterogeneity found. For PD and MS, TR seems to yield comparable results to in-person treatment
    • 

    corecore